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Hyperbolic Partial Differential Equations
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Abstract.AWe derive and analyze several methods for systems of hyperbolic equations with
wide ranges or signal speeds. These techniques are also useful for problems whose coefficients have
large mean values about which they oscillate with small amplitude. Our methods are based on
additive splittings of the operators into components that can be approximated independently on the
different time scales, some or which are sometimes treated exactly. The efficiency of the splitting
methods is seen to depend on the error incurred in splitting the exact solution operator. This is
analyzed and a technique is discussed for reducing this error'through a simple change of variables.
A procedure for generating the appropriate boundary data for the intermediate solutions is also
presented.\,
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1. Introduction.

pSplitting Aittliods lor Liuie-dependent partial dill'eren i:l eqiaLiots have beei fiiost rrequently
stu(lied in the context ol Sl)aLinl spliLtings, as in the apl)roximate factorization techniques for
cllhihtntly imi)lmieiting implitit algorili nts in more than one space di rension[6], [11], 113]. Some
aLtention has also been given to splitting or fractional step methods for problems where the
differential operator is split up into pieces corresponding to different physical processes which are
most naturally handled by different techniques. This has been done, for example, with convection-
diffusion and the Navier-Stokes cquations[II, (41, [51.

More generally, a splitting method may be useful any time one is faced with a problem

Ut = AU(.1)

where A is some differential operator of the form

A = At + A2

such that the problems
Ut = Aiu (1.2a)

and
Ut = A2u (1.2b)

are each easier to solve than the original problem. By alternating between solving (1.2a) and (1.2b)
we hope to compute a satisfactory solution to ([.1).

In this paper we consider such methods applied to a one-dimensional quasilinear hyperbolic
.system

Ut = A(z, t, U)u, (1.3)

where A is an n X n matrix with real eigenvalues. We assume that A is of the form

A= Af +A,. (1.4)

In our notation, "f" and '" stand for "fast" and "slow" respectively, which reflects a common
situation in which the solution contains waves traveling at quite different wave speeds. If A is
constant then the solution operator for the problem (1.3) on a single timestep of size k is exp(kAa.),
that is to say

u(x, t + k) =exp(kAO,)u(xz (1.5)

Fcr nonconstant A the solution operator is more complicated. 06 inalysis will be concernedmostly with the constant coefficient case, so we will use the notation of (1.5) throughout. The

ideas generalize easily, but are most intuitively seen in terms of exponentials.
The additive splitting (t.4) comes into play when the solution operator exp(kAOa) is ap-

proximated by the product of the solution operators for the subproblems

ut = Afu. (1.6a)

and
Ut = AuZ. (1.6b)

We replace (1.5) by
u(z, t + k) exp(kA1 O2 ) exp(kAcO)u(z, t).
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A ni apI I roxinatioii Lo ukx, t +t k) is thu oS 01 Lin ued by first, so! viii g (I .1;b) wit LIII i(:r t) aS i nitial data,
andi singy the resultinig solution IS inilial dta- f'or (I .ta). If' Af and ,' (fIiinitII.e, this :ipliltlirg
is exact. When they dot not coinmiuiLe, we have initroducned an erro r whichI is 0(k2 ). As nloted by

,1rng16], Lhis error c-an be reduced to 0(k0) by use of the splitting

cxp(k(A11 + A.)d ) ;:: exp(!kAfi)e~xp(kAi)etxp(1kAfi),). (1.7)

Analogous results hold for the corresponding splittings with variab~le coefficients. Computations
confirm that the global error is also improved (from 0(k) to 0(k')) by thle use or this Splitting.

The numerical approximations to the solution operators cxp(kA.8O,) and exp(1kAf0,,) will be
denotedl by Q,,k) and Qf(k/2) respectively. The numerical method based on Lte Strang splitting
(1.7) is then

Un - Qf (k/2)Q.(k)Qf (k/2)U" (1.8)

where U' is the numerical approximiation to u(mnh, nk) on a grid! with Ax = h anid At = k. When
Splitting a multidimensional problem into one-dimrensional siibproblemns, this sort of a splitting
gives rise to tile so-called locally one dimensional (LOD) method, a spatially split scheme. In Lte
present context we will refer to (1.8) as the time-split method.

In practice U7n+l can be computed via thle sequence

U Qf(k/2)Un

U* Q.(k)Un 19

m = Qf (k/2)U*

although it should be noted that when several steps of (1.8) are applied successively the adjacent
Qf (k/2) operators (can be combined into Q1 (k), and the half-step operators needl only be applied
at Lte beginning and immediately before printout, i.e.

M= Q f(k 2) Q,(k) Q f(k). .. .Qf(k)Q.(k)Qf (k/2)UoJ0

There are several situations in which the use of the time split method may lead to a more
efficient solution of tile original probleni. We will mention three such cases here. Our analysis will
be mostly concerned with the first and last of these.

Problem 1: Suppose the solution to (1.3) contains both fast waves and slow waves, i.e. the
cigenvalues j of A satisfy

II I 1121 " I I<Ip+ I . < fl.1

Assumne also that there are relatively few elements of A which contribute to the fast waves. We can
take advantage of this structure by splitting the operator into slow and fast parts and using small
time steps only on the rast part. That is, we can choose k so that exp(kA.0.) can be adequatly
represented by a single step of some finite dlifference scheme and then approximate exp(!kAf iO2 )
by several steps of a difference scheme with a smaller timestep. Similarly, we can handle more
than two clusters of wave speeds by means of further splittings.

Stich a splitting method requires less work thtan using small timesteps on thle full unsplit
problem, and will thus be more efficient provided the accuracy is not too adversely affected by the
error in the splitting. We will see that this depends very much on the problem' at hand. In cases
where the splitting error is small, the time-split method actually may be more accurate, since we
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will he able to use nearly opimnal mesh ratios for each chlister to minimize ihe trincation error
amid improve other charalerisLics or Lme iinedliod, such as its dissilpalive behavior.

Similar splittings have been coisid(ered by Ingqmiist, C ustassoii and Vreeblurg[.1 'or this type
of problen. 1 However, the spii tting i their problem ilvolved Iittle interaction between the dillerent
time scales, so that nany of the problems we shall encounter were not present.

Example 1.(. Consider a block triangular system of tie form

with IIA,1II--- IIA2211 ; I and c K< t. It is reasonable to take

ASF = [-Ao1 ] A. =[0A1

For this problem the effectiveness or the split method depends greatly on the coupling Ai 2 between
the difTerent time scales. This is analyzed In section 2 where we also present a simple procedure
for changing variables to reduce the coupling.

Problem 2: Consider the same situation as in Problem t, but where the fast waves are
known to he absent from the physical solution of interest. Recently Kreiss[91, [101 and Browning,
Kasahara, and Kreiss[2] have considered some new approaches for this problem which rely upon
properly preparing the data so that the fast wave components are eliminated. These can be
considered as projection techniques. Majda[121 has considered using filters to suppress the fast
waves in the same context.

In this case the true solution should satisfy

exp(kAO=)u(x, t) = exp(kA8 O2)u(z, t)

providing the splitting between fast and slow scales is done correctly. For variable coefficient
problems it will not be possible to have the correct splitting at all times and ohe operator A1
cannot be dropped entirely. However, we can consider using the time-split method (1.8) with a less
accurate scheme for Qf(k/2) than is used for Q,(k) , perhaps by using the same timestep for both
with a larger spatial step for Qf(k/2) . In such a manner it may again be possible to obtain the
same accuracy more elficiently. Turkel and Zwas[18] have considered a method for this problem
which is similar in spirit.

Problem 3: Suppose that the coefficients in the problem (1.3) have large mean values
about which they oscillate with small amplitude. In this case it may be possible to split out a
constant coefficient problem which can be solved exactly, leaving behind the small perturbations
for A,. Then (1.8) can be used with some large timestep approximation for Q. (k) while Q,(k/2) =
cxp(!kAfOc) exactly. This is clearly more efficient than using small timesteps on the unsplit
problem. Moreover, since the dominant part of the operator is being handled exactly, great
increases in accuracy are also possible.

Example 1.2. The simplest example is the scalar problem

Ut = 1+ a(z))u2  1.2

where Ia(x)l < I and we use the splitting

A1 = 1, As = a(z).

3
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'rake k = for some inLegr 1). The operaLor ,x p( 2 kAfi).) in known exactly: ex I(' k, )e( :, t) =

11(x + "'ph, t). 11f Lax-Wendrolf is used lor the rn'aining s11bpro)bhvm ut E,(x)u then Lhe iiw,hod
(1.8) :an be written as a single step method
un+1 = un + "1 "n +" 2 + (Xp+

7n + + 2 AM. + I - U, 1+p_ I) + ,p 2 ( .n)((,(.r + h) + ,(.))(tjn+P+, - n+P)

- (a ) + a(#.n - h))(uJ+p - U )
n+p-1)

where in = x, + lph. Notice that even though this is a scalar problem, the operators O and
a(x)), do not commute and so the Strang spliting must be used.

The shallow --later equations provide a more interesting example of Problem 3. These are
discussed in section 8.

General considerations- The effectiveness of the time-split method depends on the error
in the splitting (1.7). 11' this is exact then the splitting method is clearly more efficient Ior the
types or problems we are considering. On the other hand, il' the splitting error dominates, it
may 1e necessary to reduce the timestep considerably, eliminating the possible benefits of the
splitting. In the next section we derive an explicit expression for the splitting error and indicate
how to determine whether a splitting method is useful on a given problem. We will show that the
equations sometimes need to be transformed to reduce the linkage between fast and slow modes in
order to achieve the desired accuracy.

The Q operators in the time-split method can consist of one or more steps of any explicit or
implicit scheme using two time levels. It is not immediately clear how a scheme using more than
two time levels (such as leapfrog) could be used. For suppose we want to use leapfrog as Q,(k) to go
from U" to U** in (1.9). Then we would need some approximation to exp(-kA,8 O )U* (which is not
U") to play the role of U* at the previous Lime level. As a first step towards incorporating multi-
level schemes into the splitting framework, section 4 introduces a different type of split scheme
which does use leapfrog for Q.(k). This method is based upon approximations to the variation
of parameters formula, or Duihainel's principal, and will be called the Leapfrog Duhamel method.
Similar ideas have been used for ordinary differential equafions by Certaine[31. The accuracy and
stability of the Leapfrog Duhamcl method is considered in sections 5 and 6.

The initial boundary value problem is considered in section 7. In most cases boundary data
will have to be supplied for the intermediate solutions U* and U** in (1.9). We consider the

-'problem of approximating the correct boundary data in terms of the given boundary conditions.
Some further examples of splittings and computational results are presented in section 8.

2. Accuracy of the time-split method.

In this section we consider discretizations of the approximate splitting

u(, t + k) ;+ exp(2kA/O.) exp(kAoO7) exp(I kAfO) u(z, t) (2.1)

for the solution of ut = Au. , (A1 + A,)u, with 11A.11 < IIA/11. Up until section 7 we will deal
only with the Cauchy problem, where -oo < z < oo. Of course these results also hold for a strip
problem with periodic boundary conditions, e.g., 0 < z < I and u(O, t) = u(1, t). We will assume
that A1 and A. are constant matrices but our approach carries over for more general problems
if the exponentials in (2.1) are replaced by the appropriate solution operators. For example, the
splitting error for the problem (1.12) is given in example 8.2 of section 8.

If A/ and A. commute then the splitting (2.1) is exact. Otherwise we define the splitting error
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operator E/',PHL(k) by

LSp tE1 (k) = exp(!kAfO)Pexp(kAO) cxp( ' kAiOx) - exp(k(A ! + A)o,)

-0- ( .AAA f + 1AA 2 (2.2)
4 f 2 4 f3

'AoA 1 + A.A 1 A. O(k 4).

The local truncation error operators for the approximate solution operators Q/(k/2) and
Q,(k) are defined by

E1 (k/2) = Q 1(k/2) - exp(i!kAfdz)

E'k) = Q.(k) - exp(kA.O.).

Note that for a second order scheme such as Lax-Wendroff these are O(k 3 ). We can now compute
the truncation error operator for the split scheme. The numerical solution operator is

Qf(k/2)Q(k)Qf(k/2) = (exp(I kAfO ) + E1 (k/2))(exp(kA.O,)) + E,(k))

x (exp(t1kA1 i) + E1 (k/2))

- exp( kAO ) exp(kA.aO,) exp( 1kA1 i).)

+ E.(k) + 2Ef(k/2) + O(k 4)

= exp(k(Af + A,)O) + E plit(k)

+ E,(k) + 2E 1 (k/2) + O(k 4 ).

The truncation error operator for the time-split method (TSM) is thus

E"S"(k) = Q1 (k/2)Q.(k)Q,(k/2) - exp(k(Af + A.)O1)
- E5pjL(k) + E.(k) + 2E1 (k/2) + O(k 4). (2.3)

For a given problem this error can be computed directly and used to assess the efficiency of the
time-split method relative to an unsplit method.

In order to illustrate some of the properties of this method and the effect the splitting error
ESplit(k) has on its utility, we restrict our attention to the case where Q.(k) consists of a single
step of Lax-Wendroff. For convenience we use LW(A, k) to denote the Lax-Wendroff operator,

LW(A, k) = I + kADo + Ik 2 A 2 D+D-

where Do, D+ and D_ are the standard centered, forward, and backward difference operators,
respectively. We thus have

Q.(k) -- LW(A,,k). (2.4a)

For Qj(k/2) we consider both

Q1 (k/2) = exp(!kAfo9) (2.4b)

and
Qf(k/2) = (LW(Af, k/rn))"'1 2  (2.4c)

for some even integer rn. The situation (2.4b) occurs when the solution operator exp(IkAa6.) is
known exactly, as in Problem 3. In (2.4c) Q1 (k/2) consists of m/2 steps of Lax-Wendroff with
timestep k/r. This might be appropriate when solving Problem 1, for example.

5I1
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The st:dard error analysis ror Lax-Wetllrolf shows that, for (2.1;a) we have

E,(k) - ILW(k) - ' . 2 ,1 )0 + o(k'). ('.,),(k) 'A0 - kh (2.5

When (2..4b) is use(d there is no error on the fast scale and

Ef (k/2) = l,,xP~k/2) = 0. (2.5b)

Otherwise, when (2.,4c) is used,

Q1 (k/2) = (LW(Af, k/m)) 'm/ 2

= (cxp( a af) - z () 3)

exp( kAO) - r ( kA A 3  k 2"  03 4)

2 
6 i 2- -2 1) +0(k

and so
Ef (k/2) = E w(k/2) = - -1 -. k-!A A-yk + (k4 ) (2.5c)

In this case we must choose an appropriate value of m, the number or small timesteps used within
each large timestep. For fixed h, the error ELW(k/2) does not approach zero as rn --+ oo. From

(2.5c) it seems unreasonable to take rn any larger than a value for which 11jI 3! I Ikh 2 AfI.
This suggests taking

m II JAf 11. (2.6)
h

The proper choice or m may also be influenced by stability requirements. Determining the stability
or the operator Qf(k/2)Q,(k)Qf(k/2) is in general a difficult problem, which will be considered
in some deLail in section 5. It will be shown there that [or some problems the product operator
is stable provided Qf(k/2) and Q.(k) are each stable independently. It is well known that ror
Lax-Wendrolf the stability condition on Q1(k/2) is p(Af)k/rnh < 1, i.e., m > p(Af)k/h. The m
given in (2.6) is consistent with this requirement. Also note that for k/h 1/11A.11 , (2.6) becomes
m IIA,1111A.11.

When the splitting error Ep8 :t(k) is negligible compared to the other terms in (2.3), the
truncation error for the split scheme becomes

E 8TM(k) = E.(k) + 2EI(k12) + 0(k0)
4 - k(A . + -LA 3) - kh2 (A. + A,))a3 + O(k 4 ).

This error is roughly the same as we would obtain using (LW(A, k/m))", i.e., Lax-WendroT with
small steps on the unsplit problem. The truncation error for ,he unsplit method can be( derived in
the same manner as (2.5c) to obtain

EW(k) _ - 0A ) - kh2 (At + A.))a 3 + O(k 4) .

S- L--A - kh 2 (Af + A.))O .

Thus we do almost as well by taking large steps with A. and small steps with A1 as we would by
taking small steps on the unsplit problem. This can lead to considerable savings. if Q1 (k/2)=

~1 8



exp( 1 k, lOi)) the results are even more striking. Now the.error (2.3) is simply

E"-" (k) = E(k) + 0(k0) = - A' - kh2 .,A )O + 0(0).

Comparing this to (2.7) shows that the split scheme is considerably more accurate. It also requires
less work, since now nothing is computed using small steps.

The results of the last paragraph are all based on the assumption that E.,pjlt(k) is negligible.
In practice E.pit(k) may easily dominate the discretization error E,(k) + 2E 1 (k/2). in this case the
split scheme is less accurate than Lax-Wendrofl with timestep k/r. Nonetheless the split scheme
may be preferable. It may be possible to use the split scheme with smaller k and h to obtain
better accuracy while still requiring less work than the unsplit scheme. The proper quantity for
comparison is the work required to obtain a given accuracy. This can be estimated and compared
for various methods as we now do. Under sonic mild assumptions, we will see that the methods
(2.,Ia,b) and (2.4a,c) are always more efficient than the unsplit scheme (providing we choose k/h
properly).

Work comparisons. We will compute expressions for the work required to obtain a solution
at time t = I with error at most T. All of the bounds below are rough order of magnitude bounds
which are sufficient for our present purpose. Suppose that

AII ll hlAfhi = a, 11A.11 = b

where b/a = c K< 1. Also suppose that I1 ,,.11 1. This is for convenience only, since it removes
one common factor from all of.the bounds below.

We will first analyze the unsplit Lax-Wendrolf method LW(A, k). Suppose that W is the
work required to compute LW(A, k)U' at a single point x,,. Then the work required to advance
the solution on a unit x-interval by one unit of time is W/kh = XW/k 2 if k X Xh. The error
committed in one time unit using the unsplit method is bounded by

Il((LW(A, k)) 'I/k - exp(Aa,))uli
1 3 211lla 1l) + ( 4))

< ({k IIAII + kh +(k

< k 2 (a 3 + a/X2 ) + o(k 3 ).

Since we require an error r, we set

Ik 2(a' + a/X 2 ) =

giving

k 2 -- 6 -r
a(a2 + l/X 2 )"

Thus w(r;X), the work required to achieve a given accuracy T using Lax-Wendroff with stepsize
ratio X, is given by

XW
W(r; X) = -2-

a2 W
= (Xa + 1/Xa) -.

7



We have not yel, specilied X. Choosing X to niimize w(r; X) gives X = I/a and the irinitruiu work
w(r) is

a42Ww(r) =- for unsplit Lax-Wendroff. (2.8)
31r

Now consider the split method (2.4a,b). Let W. be the work required to apply Lax-Wendroff on
the slow scale and W' " the work required to computed cxp(kAjO,)U . Set WSM W. + W7x .
Typically W"sM ; W. The error over one unit of time for the split scheme is bounded by

I((Qf kI2)Q.(kQf(k/2))k exp(AOJ) ull

1i jI.pjt(k)L + E,(k)u + 2E 1(k/2)v. + O(k4

For (2.4b), Ef(k12) = 0. From (2.5a),

IIEa(k)uj < 1 k(k2b3 + h2 b)
= k3 (b3 + blX2 ).

The splitting error is bounded using (2.2),

E.plit(k)uUj < lk 3(a 2 b + ab2 )

;:t I kaa2b,

although it may be much smaller for some problems. Since our results depend very much on the
size of this error, we will suppose for now thit

IIEpIIL(k)uI-:l < kk 3ur

for some o, so that

IIEpL(k)u + E.(k)uI 5 k2 (u +b + b/X 2).

In order to obtain accuracy r we must take

Ic 2 
_ 6r

a + b3 + b/X2

so

w(7-; X) = XW"s"/

X(a + b3 + b/X2) W75 " (2.10)

The optimal stepsize ratio X now depends on the size or the splitting error and is given by

S +bS (2.11)
Or+ b3

so that

w(r) b(. +b3) -8 for the time split method (2.4a,b).

8



If' t < bV5 (e.g. when A1  and .A, .,,nrit.ic), tli (2.1 I) giv.s X I lib and
~~b" 's m

W(T) -- (2.12)

When W" - IV this is better than (2.8) by a factor or f , meaning greatly inproved efficiency.
Note that when a = 0 the only error incurred is the error in using Lax-WendrolT on the slow scale.
Front our previous discussion of Lax-Wendroff it is clear why X = I/b is optimal in this case.

On the other hand, ir the splitting error is as bad as (2.9) indicates, then o = a2 b and X - 1/a
in (2.1 1) giving

abWsM
u(r) = -3r

This is still an improvement over (2.8), although now only by a factor or c. Note that now X is
chosen appropriate to the fast scale, even though the fast part of the problem is solved exactly,
in order to reduce the error due to splitting. Indeed, i" we try to use X = I/b when a = a2b, we
obtain no improvrment over (2.8). For this reason it is advisable to always use small time steps
with the time-split method (2.4a,b) unless E,,,jit(k) is known to be very small, in which case even
greater efficiency is achieved by using larger timesteps.

Now consider the method (2..a,c) where Lax-Wendroff is used for both operators. In this case
PV"" = W. + mW where W, is the work requried to apply Lax-Wendroff on the fast scale. We
are assuming that Wf << W ; W. We will take m X: Xa as suggested in (2.6). Using (2.5c) we
find that

k11Epm,(k)u + E.(k)u + 2E (k/2)u j _< 6 2 (. + b3 + b/X 2 + a3 /m 2 + a/

We then obtain

w(r; X) = X(a + b3 + b/X 2 + 2a/X 2 ) W. + XaW,+ l 2a/W 6T

PX( + V + 2a/X 2) W- + XaW1  For (2.4a,c). (2.13)
6T

The optimal X now depends on the relation between Wf and W and is more difficult to solve for.
We will discuss three possible choices of X: X =- I/a, X = l/b, and X = 1/Vla.

When X = 1/a, m = I and we are simply alternating between LW(Af, k) and LW(A,, k). In
general we would not expect this to be any more efficient than using the unsplit method LW(A, k).
Indeed, we find that

w(r; I/a) ; ((D + b3)/a + 2a')w . +r

;t a 2 W ,+ W f "

3r

regardless of the size of a. This is better than (2.8) only if W. + W < W, which is generally not
the case for the problems we are considering. (Note that this is the case, however, in the LOD
method, where we alternate between solving one-dimensional implicit problems in different space
dimensions.)

For X = I/b increased efficiency is possible if the splitting error is small. From (2.13),

w(r; I/b) = (al/b + 2b2 + 2ab) +I

W. + SC&Wf
(a/b + 2ab) 87

."



S,,ppose thati. IV' + I , -1IV I'or soni -< 1/2. rhen iV, + (, Vf - "w and so,

,(T; I/b ) = ( U lb2  + 2,< ) . (2.1 i)

6T

This is better than (2.8) whenever a < ab2/-1. In his case the Limne--stplit, mnethod is mnore e,1icieit.
For example, if a = 0, (2.1.1) is better I Iha (2.8) by a l'actor of -y.

Unliortui ltely, i" a = a-b as in (2.9), tlie

a 2(W. + aWs)W(T; lib) -; -_ r

which is no better than (2.8) and ulMay be worse i r/f > (W.

Now consider an intermediate stepsize ratio, X = I/v/-. From (2.1 3),

w(r; 1/ v rb) ; i---(a + 2a >b)

v-b 6r

< a3/2 b1i 2 WI, + \I V

2T

2W., + b'~ W1
- (-a2  

2T

regardless of the size of a. 'his is better than (2.8) if W1 + V1W, .5 2 W, which will generally be
true.

We conclude that the method (2.,la,c) is more efficient when X is chosen correctly. If the
splitting error is known to be small then X = ilb can be used. Otherwise smaller timesteps should
be used, e.g. X = l/Va/b. Very small timesteps, X = I/a, shotild never be used.

Here we have not dealt, with the advantages of' the split scheme resulting from the possibility of
choosing the sLepsize ratio on each scale so that the k3 amid kh ' terms in each of the Lax-Wendroff
errors nearly cancel out. When this can be done, the splitting may be even more advantageous
than indicated here.

Block triangular systems. Since the efficiency of the split scheme is lI nited primarily by
the splitting error, it is interesting to investigate how this error depends on the coupling between
fast and slow scales in a simple model system. Suppose that the matrix A is of the form (1.10)
with 1/11211 ; a < I and that the splitting (I.11) is used. Here A12 is the coupling between fast
and slow scales. If A12 = 0, the problem is uncoupled and E,,it(k) = 0. In general, from (2.2),

k 3 k 0 - AIL(AA12-2A12A22) i+30(k 4 ).

Thus IIEspjt(k)uj P- a k3 /24c 2 . The efficiency of the splitting depends on the size of a. In the
notation used above, we have

a = l/E, b-" 1, a = coxa2 b.

For unsplit Lax-WendrolT, (2.8) gives

W(T) -- 1 W (2.15)

The time-split method (2.4a,b) is always more efficient if we choose

X (1 + -laa2 b)- / 2 .

For example, if a I I we should use X ,z 2/a -= 2c in order to reduce (2.15) by a factor of C. The
maximum efficiency indicated in (2.12) is achievable only if a < 2 , in which case taking X = !
reduces (2.15) by a factor or c

10



Reducing the splitting error. For block traiigul:Lr sys:erris in1 which ' 112 is not .sillicieni ly
smill, it, is J)ossihl, to redIice ,he couplin Hi irow,li a cinge of variables so Chat the oplinal

elliciency can be achievd. A d, hange o' v:'iabies Arnoon irk I,o replacing it by it = Ia ror some
noru;ingular malrix 1). The system iut = A,,t then becones it, = BAIH- j,. Clearly, if L is
chosen to be the eigenvector natrix of A then the problem completely decou ples into independent
scalar equations. We are seeking somretlhing less expensive which only decouples the ast and slow
scales. Thus we want a matrix B such that

B-.= 0 C 22] (2.16)

with l1rII IlIC22 l 1. In the block triangular case, it sufilces to consider B of the form

B 0 ~B2 = [0 812

Then
llaJ3 -LA !_A -- 12 + A12 + B12A22B A Y - ' 0B A 2 2

and so B12 should be chosen to solve

1
-AiBi 2 - Bt 2 A2 2 = A1 2  (2.17)

in order to completely decouple the fast and slow scales.
In the present context solving for B12 froim (2.17) is not worthwhile. In order to achieve

optimal efficiency we need only reduce the coupling by one or two factors or c. Further reductions
do not gain anything once Lhe Lax-Wendroff errors dominate. This suggests taking

B12 = cAI-IA,2  (2.18)

so that

BAB-'- [hAo" AJ(,2)

where
A(')= EA A1 2 A 22.

We now have IIA1211 CC' provided IiA- 11l - 1. The coupling is thus reduced by a factor of
c through the use of a very simple change of variables. The above process can be repeated to
obtain additional factors of E. This change of variables has been suggested by Kreiss[g9 in a similar
context.

For full systems of the form
A= r A  1A21

[ A2 1 A221

we can obtain a similar reduction in the size of both off-diagonal blocks and again reduce the
splitting error by severa! orders of magnitude. In this case we consider B of the form

*=[I K][1 0] [1 + L Ki]
K 1 I



It is easy to verily that the lower corner of A is annihilated by taking L to salisry
I
-. Lit - 122L 11A12l + A21 = 0.

'The matrix K can tein be chosen as berore to remove the remaining upper corner. This results
in a system of the [orm (2.16). This particular transformation is discussed more completely by
O'Malley and Anderson[l4j. Again, however, we are not interestled here in completely annihilating
the corners, but rather in reducing them by a f'actor or c. This is easily accomplished by taking

K = cA-i,'A 12

L = -A 21 A-.

Example 8.1 in section 8 illustrates the use of the change of variables for a triangular system.

3. Stability of the time-split method

In this section we investigate the stability or the time-split method when applied to a constant
coellicient problen on the entire real line, -o < x < co or, alternatively, on a linite interval
with periodic boundary conditions. When Q1(k/2) = Qf(k), as is true for the spliLtings (2.A), for
example, Cauchy stability of' the Strang splitting (1.8) is equivalent to stability of' the first order
splitting

U "+ = Q,(k)Qi(k)U". (3.1)

For simplicity we restrict our attention to this splitting, and set Q(k) = Q8 (k)Qf(k).
In general the stability of Q3 (k) and Q1 (k) does not imply stability of Q(k). Instead stability

must be checked directly. In fact, (3.1) can be unstable even when Q1 (k) and Q.(k) are exact
solution operators for well-posed hyperbolic problems as the following example shows.

Example 3.1. Let z' = : A. = [ 0]
Then the problems ut = Afu,, ut = Au, and ut = (A1 + A,)u, are all well-posed, strictly
hyperbolic problems for any value of the parameter /i. Let

Qf(k) = exp(kAfO ), Qo(k) = exp(kA8 a.).

and let G 1(c, k/2) and G,( , k) be the corresponding amplification matrices. For the exact solution
operators,

G1 ( , k/2) = exp(ikEAf)

= e~k Aisin kE
0 e-ik4

and
G.(C, k) = exp(ik A.)

[cos kC i sin k~j
-[isin kE cosk "

We have p(Gf( ,k/2)) = p(G,(E, k)) = I for all C and k. On the other hand, the amplification
matrix G( ,k) for the time-split method (3.1) has p(G( ,k)) = I for all C and k only if 111 < 2.
When Ips > 2, the method is unstable. Figure 3.1 shows graphs of p(G( , k)) for s = 5, 10.

In spite of this example, there are some very important classes or splittings for which the
individual stability of Q1 (k) and Q,(k) does imply the stability of Q(k). It is useful to delineate
such classes, since the stability of Q1 (k) and Q.(k) is often easy to determine, whereas the stability
of Q(k) may be quite tedious to determine directly.

12
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Figure 3.1. Spectral radius of the amplification matrix G(C, k) of example 3.1 for 14s 5, 10, as
a function of /k between -7r and 7r.

Block triangular systems. One such case is the block triangular system of equations

[ = - I
[ A22

with the splitting (1.11). The solution v does not depend on u. In solving For u, the computed u
enters essentially as a forcing function. The schemes Q,(k) and Qf,(k) will be of the form

I Q12(k)' Q11'k) 0 ]("'
Q.(k) = [0 Q2(k] Qf (k) =[Q1 k 0 1 (3.2)

Suppose that Ql i(k) and Q2 2 (k) are stable schemes, and in Darticular, that there exist a norm II
and a constant ot > 0 such that

QI l 1 (k)jl < 1 + ak for all k sufficiently small. (3.3)

All or the following estimates will be in this norm. We also suppose that

IIQ12(k)VII kMIID+VII (3.4)

for some constant M. These assumptions are satisfied for the methods (2.4) provided the Lax-

WendrolT operators are stable. We then have the following theorem.

13



Ti .()If- : M . I. .Siifppose Q -(k) aud Q.(k) ar, stable .s5'/i .ii v .s ab ov,. l'hoti th,, split s ,lIene
Q,(k)Of (k) is L;abl llor stiool i iuitial data V('. More precisely, we obtain bounds for I, :ol iLion

which depend on a di.,'rete Sobohv norin of the initial data,

i(ll < Kr(ilIl + IID+ V0 11) (3.5a)
I I V "I _ k7-11V')Il (3 .5b)

for nk < T. lre KT and ifT are constantis depending only on the fixed Lime T.

Prool' When the full scheme -j,?' = Q,(k)Qf(k)Un is written out we obtain

U"+1 = Q,,(k)U"' + Ql,(k)Q 12(k)V' (3.6a)

= Q22(k)Vn (3.6b)

The bound (3.5b) follows immediately from (3.6b) and the stability of Q22(k). Moreover, by
linearity, "n identical bound holds for the linear combination of solutions D+V', i.e.,

IID+V"II KrIID+V11.
Using this together with (.3.4) in (3.6a) gives

IIU"+ ' II < IiQ, 1(k)ll(llUIll + kMfKrilD+Vll).

When iterated n times this gives

IIUII _ IIQ1,(k)llllUII + kMkr(IIQII(k)llnI' + IIQ(k) II - 2  (37)
+ + IIQ,,(k)II + 1)IID+VII.

fy (3.3), IIQtn(k)II _ (I + ak)n < e"7 if nk < T. Using this in (3.7) gives
IIUTJII eaT(IIUOj + TMKrIID+V°II)

for nk < T, which is of the desired form (3.5a). |

Simultaneously normalizable matrices. Stability also follows directly when A1 and A.
are normal matrices (.r normal matrix is one which commutes with its transpose). This includes,
for example, symmetric matrices and scalar problems. In fact, it suffices that A1 and A. be
sim,,ltaneously normalizable, i.e., that there exist some nonsingular matrix S such that SA.S- t

and SA 1S-' are both normal. Thus, the case of simultaneously diagonalizable A/ and A, is also
covered. This is a consequence of the following, even more general, theorem.

THEOREM 3.2. Let A,, A2 ,..., An be constant matrices. Approximate each solution operator
exp(kjAO,,) by some operator Qj(k,) with amplification matrix Gj(C). Suppose there exists some
norm 1" I1 for which IIGaE()II < 1 yE, i = 1, 2, . .. , m. (3.3)

Then the scheme
1 -- Q1 (k1 )Q2 (k2 )... Q,(k,)U" (3.4)

is stable.

Proof. Let G(E) = Gi()G2()... G,(E). Then powers of G(C) are uniformly bounded in the
norm 11 since

*I I< I )

It follows that (3.4) is stable. I

14



(Thitoi. i.m ty Siuppow there (,.\ js/s ;onwi tionsiiigiilar tun:trix S stieli that S.- A)S-- is normal
li~r j = I, 2 . ., in d 1 hatl;t the ;tiililicatit hUm l rie., (() satisfy

i) p~((d ) 5 1 VC, j 1,2,. ..,rn

ii) SG 3( )S-' is also nortnal ror all ~,j = 1, 2,..., m(35

Then the schemei (3.4) is stable.

R~emrark: Condition (3.5ii) is satisfied if' Qj(k3) is the exact solution operator or one or more
steps or Lax-Wendroif.

Proof. Since the 2-norm or a normal matrix is eqlual to its spectral radius, conuditions (3.5)
give

It f'oilow that the hypothesis of' Theorem :3.2 is satisfied iii the ijormn (leifed by

This completes the proo. 1I IA-12

4. The Leapfrog Duhamel method.

As mentioned in the introduction, the time-split method does not immediately lend itself to use
with multi-level difference schemes. We now present a new mnethod with the same basic philosophy
as the time-split method but which uses leapfrog on the slow time scale.

Using Duharnel's principle (i.e., variation of parameters) we can write the solution to (1.3) is

t+k

u~,t+k) = exl)(2k~lf 0)u(x, t - k) + ]__ex p((t + k - r)A f o)A u~,, r dT.

If we now approximate the integral by the midpoint rule we obtain

'4u(x, t + k) ;: exp(2kAf 0,)u(z, t - k) + 2k exp(kAf a,)A~u,(x, t)

=exp(kAf i) [exp(kAf 1 l3)u(x, t - k) + 2kA~uj(x, t)].

Replacing u,(z, t) by the standard centered difference operator and approximating exp(kAf 47 ) by
Qf (k) gives the Leapfrog Duhamel method,

U1= f)[fk '-+ A.(U"+I- M (4.1)

The term inside the brackets is essentially leapfrog for the problem ut = A~ux since Q 1 (k)U"-'
exp(-kA.O9,)U". irf (k) is an 0(k 3 ) approximation to exp(kAO0x) then (41.1) provides an 0(k 3 )
accurate approximate solution, even for noncommuting Af and A.. This will be shown in section
5 where the method is analyzed in more detail.

We pay a price for using a scheme involving three time levels, since (4.1) requires two applica-
tions of the operator Qf (k). One of these is needed only to provide the proper values at time n-I1.
Nevertheless, this method may be useful, particularly in cases where exp(kAf ,j) is known exactly
and thus is easy to apply.

15



5. Accuracy of the Leap frog Duhamel method

The Leapf'rotg I)kihail m-hemne call be analyzed ini terrim ol' thle error ini tie umid point rule
directly f'romi its derivationi. We pref~er to buil upon thOl le results in sctin 2 by rewii l rig Leap frog
I)uhameI as a splitting.

First considIer thle standard leapfrog scherme on ut = ASuX,

-n+ =un-[+ 2kAtDoU'1.

The truncation error is given by

[u(x, t - k) + 2kA3IDou(x, 1)] - u~x, t + k)
=[(I + 2kA.3Do cxi(kilO9)) - exp(2kA soz)Iu(x, t - k).

For conformity with section 2, we define thle operator Q.(2k) by

Q.(2k) =I+ 2kA3,Do exp(k.A~r3 q

Note that this is not the actual finite diffcrence operator for leapfrog, since in general Un is riot
exactly equal to cxp(kA 8 D,)U"-', but it is the proper operator for commputing thle local truncation
error, in which Un-' and Un are replaced by the true solution values. We can now define the
trumncation error operator for leapfrog on stepsize k by

pL()=Q.(2k) - exp(2kA.8O.) = 0(k) (5.1)

The Leapfrog lDuhamel scheme is

U"= Qf (k)(Q (k)U"'l + 2kA. DoU'1) (5.2)

where Qf (k) is some approximation to exp(k,,IjO)) with error operator

Ef (k) = Qf (k) - ex p(kA f o) = 0(k 3 ).

To obtain tile truncation error for Leapfrog 1)ubamel we replace U"-' and Un by u(x, t - k) and
u(x, t) in (5.2). The right hand side then becomes

Qf (k)[f + 2kA.Do exp(kA9i.)Q7 '(k)] Qf(k)u(x, t - k)

= Qf (k)ff + 2kA.D 0 cxp(kA.8.) + 2kA.Do(exp(kAa.)Qf '(k)I - exp(kA 8 0z))]Qf (k)u( x, t - k) (5.3)

= [Qf (k)Q.(2k)Qf (k) + 2kQf (k)A.Do(exp(kAO,,)

-exp(kA.4O,) exp(kil 1 a.) - exp(kAO )Ef (k))]U(x, t - k).

Thus the Leapfrog Duhamel operator can be viewed as a splitting of the form Qf(k)Q.(2k)Qj(k)
plus some additional error terms which are 0(k 3 ) Let El 1 it(k) denote tile error operator for the
first order accurate splitting

E' ',j-,k) =exp(kAO2 ) - exp(kA~t9.) exp(kAf 0.) = (k 2 ).

18



Observing that ,,×,,(k~td:,)L'(k) = O(k 3),

Qf(k) = I + o(k),

Do = O + O(k 2 ),

the operator in (5.3) l)ecomes

Q1 (k)Q 8 (2k)Q1 (k) + 2kAO E.'1 it(k) + O(k 4 ).

Using (2.3) we obtain an expression for the truncation error operator for Leapfrog Duhamel,

ELFD (k)= (Q (k)Q,(2k)Q (k) + 2kA.O E~pIL(k) + 0(k 4))

- exp(2kAOz)

Esplit(2k) + E F(k) + 2E1 (k) + 2k i)y ' Pl, k) + 0(k).

For A, and A1 constant we have

Ernlt(k) = 1 k2(AfA. - A.Af)O + 0(k)

so
Elp*i(2k) + 2kAl.a.EPl (k)

=k (AfA. - 2A 1 A.Af + A .A f

+A1iAf + A.A 1 A. - 2A 1 A,) .

'rhe splitting error in [,caprrog Duhamel is thus roughly 8 times as large as the corresponding error

in the time split method with Lax-Wendroff. The work comparisons or section 2 can be repeated

for Leapfrog Duhamel with similar results.

6. Stability of the Leapfrog Duhamel method

At present the stability analysis for Leapfrog Duhamel covers only the case in which A1 and
A. are simultaneously diagonalizable,

XAfX -1 = Mf, XA.X - 1 = M.

where M ! and M. are diagonalizable matrices. We assume that Qf(k) is stable and is also

diagonalized by X. This is true for Qf(k) = exp(kAp9.) or for Qf(k) = (LW(A f , k/))n with

p(Af)k/mh < 1. Let qf(k) be a single diagonal element of XQ,(k)X - ' and A. a diagonal element

of M.. It suffices to consider the sealar equation

" qf(k)U"-! + 2kqi(k)lDoUn. (6.1)

Let gf( ) be the amplification factor corresponding to ql(k). By assumption, lgf( )I _ I for all .

TiEOREM 6.1. Suppose IXu.1 _< 1, where X = k/h. Then the amplification factor g(c) for

the scheme (6.1) satisfies

(g( )I =
17
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I'rool. Tlhe amphlication I1%clor is derived by letting

Un = e,,"C tmh"

in (6.1). We obtain thei equation

f g(C)g'( ) + 2i,qf(C)t. sin h

which can be rewrittcn as

(g()j-( )) 2 - 2iX,, sin 0h(g(()yj'(.)) - 1 0.

Solving this quadratic equation yields

g( )g/ t (O) = iXA. sin h VI VM- X 2  sin '  h.

If jXsI < 1, the square root is real and so

and hence

1g( =WI

as claimed. 3
Note that when the exact solution operator is used for q1 (k) we have gf ( )j = I and hence

= I for all . In this case Leapfrog Duhamel is nondissipative.

7. Boundary data for the intermediate solutions.

For general initial boundary value problems we must be able to.generate the appropriate
boundary values for the intermediate solutions which arise in the use of a split scheme. We have
developed a general methodology for defining the proper boundary data which will be illustrated
here for constant coelficient problems at an inflow boundary. More general problems can also he
handled, as will be reported on elsewhere. The procedure will be demonstrated for the time-split
method (2.4a,b), but can also be used for the other methods previously described.

first consider the scalar problem

Ut = - 1+ )U "' x > O, t > 0(71
u(0, t) = g(t) t > 0

with the splitting
A 1 - , A,--.

Take k = 2h and use the method of characteristics solution for A1 and Lax-Wendroff on .A.
There is no need to use a Strang-type splitting, since the operators commute, and thus the split
scheme is simply

U U - 2  m 2,3,...

in - (u.+ - U._) + 2c 2(U.+, - 2U, + U,_,.)

m- 1,2,...

18



I "rhI I'al o I t' i is giv'i by I I hi bo lndary con (IiLiorn,

For the splitting (7.2) we must also provide U(] and U,. In general with k = ph for sonie integcr
p > i, we would neei to supply (), (i,..., U;,.

In order to generate boundary data we consider Urn as an approximation to u'(m,t,+l)

where the continuous function u'(x, t) satisfies

Ut = -u: X > 0, t > t' (7.3)

U,*(X, W = U(, t) X > 0.

Then, using the differential equations governinr: -t and u*, we can express U; and UI in terms of
g(t). Consider U0 . We want

U;J (O, f -
(0, t,'!. + .k.u.(0, t.) + (7.4)

( .0, t • (e, t,,) + I k 2,U(0, t,,) +

Here we used (7.3) to express u; in terms of u:. But since u*(x,t,,) - u(x,t,) for all x, this
relation can be differentiated with respict to x, giving u-(x, t.) = u.(z, t.) and similarly for higher
derivatives. So (7.4) becomes

U; = u(O, t,) - ku,,(0, t,,) + . kX-,(O, t) +....

We can now use the original equations (7.1) governing u to riwrite this in terms of t-derivatives of

u. Since
o,,= (i23 oi, j 0o

we obtain
U; u(O, tt) + Ut(+, t0) + .+.

u(0, t,, + k/(l + c)) (7.5)
g(t, + k/(1 + ,)).

This is the desired boundary data.
For such a simple example it is easy to verify that this is the correct boundary value. According

to the scheme (7.2) we would really like

U; =U" = u(-2h, t,).

or course u is not officially defined for z < 0, but using the differential equation (7.1) it can easily
be extended from the boundary. Since (7.1) has characteristics with slope 1/(1 + c), we find that

u(-2h, t,,) = u(0, t,, + 2h/(I +,)) = g(t, + k/(1 + ))

exactly as in (7.5) •
We can compute U; in the same manner. We want

u1 -- u'(h, t.+,)

= u (0, t,,+ 1/ 2 ) where t+/ -1 t,, + k/2.
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We now pr,(ced as before,

U ,,'(0, t,) + k,; (0, t,) + k , u,(0, t,,) + '"

=U(0, I) - ',kn,(0, I,) + Ik",,(0, t) +"

1 ) + _A) 8(0, n ) + . (7.6), - U , (0 , t1 ) + l + e u 0 , + ..

= ,(t, + ', /(I + o)).

To summarize our procedure, we switched from t-derivatives or" u* to x-derivatives of u*.
Since these were evaluated at tirne t,,, they were identical to the corresponding x-derivatives of
u. We then switched back to t-derivatives of u along the boundary, which allowed us to use the
known boundary conditions for u. Clearly this procedure will not work so neatly when we deal
with variable coeflicients, systems of equations, or inflow-outflow boundaries. Nonetheless, these
same ideas, combined with a little ingenuity, lead to sufficiently accurate approximate boundary
conditions for a wide variety or problems.

Constant coefficient systems. Next consider the system of equations

u = Au.= -(Af + A.)u x > 0, t > 0

,,(0, 1) = g(t) I > 0.

We assume that A and Af have strictly negative eigenvalues. In general A1 and .A8 do not commute,
so we will have to use a Strang-type splitting. There will be at least two intermediate solutions,
say

U u" exp( "kA o9)U" (7.8)

u'" exp(kAO9) exp('kAIao)U".

Of course there may be many more if exp( kAf 4%) is itself approximated by several steps of Lax-
Wvndroll', but they can be handled similarly. The general principle should be clear 'roin considering
(7.8).

Again let u*(x, I) be a continuous function satisfying

u; = ,IfU: > 0, t > t" (7.9)

u'(,, t) = u(,, t") -> 0.

We then want

I = u(0, t"+112)
= (0, t") + 1ku;(0,t,) + kk t, (0, t) +

=U(0, t,) + 1kAu.(0, t+,) + 'k Af (0, t) +... (7.10)
-= u(O,t) + -kA 1A-ut(0,t,) + -k 2 A2A -utt(O, t,) +

* = g(t.) + kAA-' g'(t,) + k2 A A- 2 g"(ti) +.

We assume that the boundary is non-characteristic so that A is invertible. In general U; must
now be approximated by the first few terms of (7.10). If we keep only the first two terms we will
have boundary data with 0(k 2 ) errors. This is sufficient to retain the 0(k 2 ) global accuracy of
Lax-Wendroff (see Gustafsson[71). It may, however, increase the error constant considerably and
partly offset the benefit obtained by using the split scheme. Consider, for example, a case in which
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Jj.Ijfj f7 a I .:lnd 11,, 1 . In this case the crr-or I,':'"'(k)u is like (k3  :1, nOWSL, a.nd te4 r'.Sul1ting
glIo1al vrfor, a:}i sni ng it is s;loolth, will be like (k 2. Iii order to at'hieve ihe sarin acciir;icy in the

b)o01 iI(Iary lata we will have to i llue the third term of (7.10) as well (or at least its dominianut

[part). In some such cases it happeiis that

A A,- = I + O(c) for j 1,2,....

We can then retain O(k 2 ) accuracy simply by taking

Uo* = J(t.+1 / 2 ) + t k(AfA - - I)y'(t,,).

This will be illustrated in Example 7.1
Now to find boundary values ro U**. The easiest way to proceed is to note that

U = exp(- 1 kAf O)U"+ '

which prompts us to define u'*(x,t) as the continuous solution to

u* (Xt)= Afu* (X,t) x > 0, t < t,,+ (7.11)

, "(X, t,+) = U(z, t,+) x > 0.

We now solve this backwards in time for

U;" = ,,,+1/2.

Procee(ing as in the derivation or (7.10) we obtain

U ---- g(t 1,+1) - tkAA-g'(tt,+,) + k 2 A2A- 2 g"(t,,) +

Sg(t,.+, - "k(afA-' - [)g(t,+,).

Example 7.1 Consider

[u[= Eti[_]

['vj C 2  -2J[vJ 0<z<I' t>0

il(x,) -f(X) 0 < x <1

l(O, t) = g(t) t > 0

where il = (u, v)T. We have chosen a strip problem to illustrate that outflow boundaries are

trrequently trivial to handle with a split method. Take

"A = ,[1 2 A. [0

For this problem the splitting error is

E.plt(k) = - 1[1E2 /C
1 4 t21
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It' we use the titne-split m(thod (2. I:,) th(n, accordhfig to (2.11), the optrri:d stepsize ratio is

X 2
c _+ '1

where c = imax I1. For k = 2h arnd h = 1/M, (2.4a,b) becomes:

U = Ur_ m- 1,2,.M

V V _2 , m -2,3,..., M

Un LW(,,, k)UO, 1,= ,2,...,M -

-. n+i (n1U0 ++ = (t+

U+  =- U I_, m= 1,2,...,M

V, +1= V _2  m=2,3,.... ,M

Notice that no boundary conditions whatsoever need to be specilied at the outflow boundary x

On the inflow side we still need to specify U10 , V;, Co", and V'. For ths problem,

A 2A-2 1 4 + CC2 3
AfA- =(2- 1f2 ) _ 12 ( 2  4+4E1c21

= + 0(c).

and we can retain O(ck 2) accuracy by taking

0 o = g(t,+1/2) + !k(AA - ' - I)g'(t,)

= g(tn+1 /2 ) + ( k CIC2 j (7.14)

(,/ c 2 )-2[2c2  1 E2gJ

Similarly we use

0 = g(t,+1 / 2 ) - k(AA-' - I)g'(t,+,).

In order to implement the split scheme, we also need Vt and VT + 1 . We want V -
v*(h,t,1/2) = V*(0, t,+1/ 4 ) and so the appropriate value comes from the second equation or

i*(O, tn+ 1 / 4 ) f (t.+ 1 /4 ) + ik(Af A 1 - I)g'(t.)

V= - 2(t,+1/ 4 ) + 4(2 + )(2f2 0 (n) + CI2g 2(t.))

where g = (g1, g 2 )T. Similarly,
v" +1 (t.+ 3 /) -2C29(t+I) + CIC2 '(t.+ 1 )).

Computations confirm that these boundary conditions preserve 0(ck 2 ) global accuracy in the
split scheme. Actually, for this particular example with k = 2h, even greater accuracy can be
achieved. Computing E.(k) rrom (2.5a) shows that the O(ck3 ) terms exactly cancel the O(ck')
terms in E~pl;L(k) , and that the total truncation error ETsM(k)u is actually O(E2 k 3 ), giving O(f 2 k)
global accuracy. Higher order boundary condit' ns can be derived which maintain this accuracy,
but this cancellation or errors is a fluke which does not occur in general.
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Stability for the initial bounditry value problem. Ihe i boIidary approximal iols (l rived
lere all del)elnd (only or) the :i,,k n bouind ry '.ijnction (t) and it's dcriv a.ives. Slip)poC lee tie-

split iIiethod used ill tile interior is Cauchy stable. Then the stability or lhe r idlin ig schern

l'or the initial boii.dary value problern hollows directly rrom the theory ol Cuslah'sson, N reiss and
Sundstrin[8j, ir we modiry their stability deli iLion 3.3 by using an appropriate Sobolev nrm of'
the boundary data on the right- hand side.

8. Computational results.

In this section we give various examples of splittings and present the results oh some numerical
experiments. The first example is a 2 X 2 upper triangular system of the tori (I.11). We
demonstrate the elrects of the splitting error and its rediuiction by the use of a simple change
of variables as discussed in section 2. 1

The second ,xam ple is a variable coetlicit nt scalar equation in which the coeflicient has small
variations arounl some large mean value. We give an expression for the splitting error in such
problems.

In example 8.3 we consider the one-diniensional shallow water equations. In some cases thi:3
system can be broken up into a constant last part and a quasilinear slow par, in conservation form.

Example 8. I. This problem is designed to illustrate the effects of the splitting error. Consider

[1t to u I . or O< X < 1, t>O (81

with initial conditions

ut(X, O) = u 2 (z, O) = e- '° ° (x - 1/ 2) 2

and periodic boundary conditions

U3 (0, t) = u3 (1, t) t > 0, j = 1, 2.

Figure 8.1 shows the results after 236 time steps using Lax-Wendroff with h - 1/50 and k = h/O
on the unsplit problem. Figure 8.2 shows the results based on the splitting[to 0] z -[0 1
We used k - h 1/50 with

Q.(k) - LW(A.,k), Q1 (k/2) - (LW(A,, kilO)) 5.

In this case E8(k) = Ef(k/2) = 0 by a judicious choice of k/h and m. The second component U2

is computed exactly and the errors in ul are due entirely to the splitting error.
If the change of variables suggested in (2.18) is applied twice to (8.1) with = 0.1, we obtain

the new variable
i =ut - (E + 2 )U2 = usl - 0.11u 2

and (8.1) becomes

U2, [to0 .][f
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If we Sil v.I hi,s '.yVi(,i wi Lh t salili' -pli . schi, .l. as Iol'ore and I hen t r:mli.:- rili Ivik Io i' 4,rigili;Ll

vari:lhCl:i by ItL = It + 0.1 It.-, th le errors in I t ar rttt 'ce.l th o J( t (o () as . Ih ligire 8.1.
LT leapfrog l)ihuiel seliie 'a be appli' l to this syst l,. with si Ijl:ia" r.sults. The saltie

changp, of variables can vdl.rly be usvl to rediice the splitting error ili this stchlie. as well.

IEXaml!e 8.2. For probLlemns of the forrm

U, = (a + t~)u

with it constant and I(x)1 < jal. the splitting error operator corresponding to A1 = a, A. -a(x )
is

Epj,1 (k) cxp( I kai) ) ,xp(ka(x),,) exp( ' kai,:) - exp(k(a + ,(X))O-)

k jk 3 (1(( 1 ( + (z))(.v) _-CX))) + 0(k 4 ).

For the Leapl'rog Duha'uel scheme the splitting error is

).i.,,M(k) + 2ka(Ixi)o ElPi(k)

- Elil(2k) + 2k(kx)d.( ) k2 ,,'(x)o0 + 0(k01 ))

= 3a[(2a + a(x))a"(x) - '(,(X))2 - 3t,(x),'(x)0.]iN + 0(k).

The Lax-Wendroff and leapfrog errors on ut = a(x)u, are respectively

=(k) -- (kt(x)[,,'(x) + 3,(x)n'(x)k( , + ((a'( ))2 +

+ Ikh 2 0(X)O) + 0(k)
6

and
-(k) _ 2ELW(k) + O(k 4 ).

For the Lest problem
ut= ( + 0.1 sin(2rx))ux on [0, 11

u(x,0) = sin(47rx) 0 < X < i

u(0, t) = u(1, t)

a comparison of the errors shows that the splitting error for either scheme with k lh should be
ofr roughly the same size as E8 (k) and considerably sma'ler ,han the error for the unsplit operator
with the same spatial step and reduced time step k = h/2. Thus we expect the split scheme with
the true solution operator used on ut = u. to be more accurate than the unsplit scheme. This is
confirmed by the computational results in 'fable 8.1. Note that in this case the improved accuracy
was obtained using only about one eighth the work required for .the unsplit scheme.

If' Lax-Wendrofr is used on the rast scale, Qf(k/2) = (IW(Af, k/8))', the corresponding error
2Ef(k/2) is roughly the same size as the error in the unsplit scheme. This error dominates in the
resulting split scheme arid so we get roughly the samne accuracy as in the unsplit scheme. This is
also illustrated in Table 8.1.

Example 8.3. The one-dimensional shallow water equations can be written as

24



wher, v(., t) is dh vlocily and k qh wit h1 h.(x, t) I 1h, hcight a nd y f ti rav;tialioItl constant.
Ty~ialy 9(rt) --, + ,(:,t) where, ,, is ,o.:tant andl

Ik'(X, t)l < 1,
Iv(X, tol < A$.

With the change or variables

u(X, t) = v(X, t)

the system (8.2) becomes +1 40 1
Tie natural splitting is then

We have IIA,1I K< IJA, 11. Tihe matrix A 1 is constant and the method or characteristics can easily
be used for Q,(k/2) . Furthermore, the problem on the slow scale can be written in conservation
form. Since 0 .= we have

A-[u] f -!2,'A ,,. .jh = t -+  [2 ¢ J ])
For the numerical experiments we used tile initial conditions

u(X,0) 0

O(,0)= t6 + 0.sin(27rx) 0 < x < I

and took 4) 16. We again used periodic boundary conditions and compared Lax-\Wendroif on the
unsplit problem with k = h/20 to the split scheme with k = h on the slow scale and the method
of characteristics for Qf(k/2) . For h = 1/100 the results are shown in table 8.2. Again the split
scheme outperforms the unsplit scheme. The errors were reduced by a factor of 100 while at the
same time tile work was reduced by roughly a factor of 10.

Acknowledgments. We wish to acknowledge Gunilla Sk6llermo's participation in the early
phase of this project. Her examples and comments helped to steer us ir the right direction.
Computer time was provided by the Stanford Linear Accelerator Center of the U.S. Department
of Energy. The paper was produced using TX, a computer typesetting system created by Donald
Knuth at Stanford.
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Figure 8.1. True and computed solutions at t .= 4.72 for example 8.1. The first component, ul,
is on the left and the second component, U2, is on the right. The scheties used are:

top: Unsplit Lax-Wendroff
middle: rime-split method (2.4a,b)
bottom: rime-split method with change of variables
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Table 8.1. Max-norm errors for example 8.2 at various times t. The schemes used are:
#1: unsplit Lax-Wendroff with k = h/2
#2: Leapfrog I)uhamel with k = 4h, Q1 (k) = exp(kaO.)
#3: Time-split method (2.4a,b) with k = 4h
#4: Time-split method (2.4a,c) with k = 4h, m = 8.

h t #1 #2 #3 #4

1/50 0.8 6.619(-2) 1.336(-2) 2.147(-3) 6.470(-2)
0.96 1.342(-1) 1.9,19(-3) ,1.598(-3) 1.315(-1)
1.52 2.058(-1) 1.A1l(-2) 7.193(-3) 2.016(-1)
2.00 2.685(-1) 3.434(-3) 9.617(-3) 2.623(-1)

1/100 0.48 1.677(-2) 3.356(-3) 5.581(-4) 1.635(-2)
0.06 3.389(-2) 4.130(-4) t.166(-3) 3.320(-2)
1.52 5.314(-2) 3.365(-3) 1.8,15(-3) 5.197(-2)
2.00 6.971(-1) 2.028(-4) 2.437(-3) 6.818(-2)

Table 8.2. Max-norm errors for u and 0 in example 8.3 at various times t. The schemes used
are:

#I: unsplit Lax-Wendroff with h = 1/100, k = h/20
#2: Time-split method (2.,!a,b) with k = h = 1/100.

t #1 #2

4 0.25 3.983(-4) 2.952(-6)
3.354(-5) 2.338(-7)

0.50 8.059(-4) 5.882(-6)
1.248(-4) 9.386(-7)

0.75 1.232(-3) 8.793(-6)
2.683(-4) 2.085(-6)

1.0 1.687(-3) 1.166(-5)
4.829(-4) 3.628(-6)
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